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SUMMARY  

This paper describes the design of the automatic target classifier which has been introduced into the 
AMSTAR Battlefield Surveillance Radar.  It discusses the requirements which have driven the design of 
the classifier, the data which is used to make the classification, the choice of Linear Discriminant Analysis 
as one of  the classification techniques used and the use of Principal Components Analysis to simplify the 
training of the discriminator.  It also discusses the addition of other classes by the use of other data about 
the targets.  It includes a discussion of the testing of the classifier and the performance achieved. 

1.0 INTRODUCTION  

The classifier described in this paper has been designed and implemented for the AMSTAR (Advanced 
Man Portable Surveillance and Tracking Radar) radar.  This is a man-portable battlefield surveillance 
radar, derived from the earlier MSTAR radar [1].  Fig. 1 shows a picture of the radar.  The principal 
features of the radar are: 

• small size and light weight 

•  low power consumption enabling operation from long periods from rechargeable batteries and 

•  very good Doppler performance. 

The small size, light weight and low power consumption allow the radar to be man-portable.  The Doppler 
processing allows it to perform its battlefield surveillance task, detecting slow-moving personnel and other 
targets, but rejecting clutter. The original MSTAR radar had been in service with the UK and other armed 
forces since 1989. It was designed primarily as a artillery spotting aid, for locating targets of interest and 
observing fall of shot.  The advanced MSTAR (AMSTAR) variant originated as a Mid-Life Improvement 
(MLI) of the original design which was undertaken during the year 2000.  In common with most, if not all, 
radars of its general class, MSTAR is a coherent radar and has from the outset possessed a  so called 
'audio' output which can be used by the operator to classify targets.  This audio mode uses a sample-and-
hold to 'stretch' the train of pulses returned from a target so that they form a continuous signal.  The 
frequency spectrum of the resulting signal is the Doppler spectrum which would be obtained from CW 
illumination of the same target.  The radar operates in the upper J-band and for this carrier frequency the 
Doppler frequencies lie within the audio band, being of the order of a kilohertz, and so can be presented as 
an audio tone to the radar operator, via headphones.   After listening to the target for a few seconds a 
trained operator can classify it with a high degree of accuracy. 
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The Doppler audio frequently sounds surprisingly like the actual sound of the object, perhaps because the 
same underlying mechanisms modulate both the sound which the target makes and its Doppler spectrum. 

The audio-based classifier has three deficiencies, however.  The first deficiency is that it must stop 
scanning and stare at the target which is to be classified, interrupting the execution of its other tasks.  The 
second deficiency is that classification imposes a high workload on operator.  He must use the cursor to set 
the radar to the desired bearing to 'stare' at the target of interest, and must frequently search in range to 
find the range cell which contains the target of interest.  He must then listen intently to the audio to decide 
the target class.  The third deficiency with such a classifier is that the operator must be trained to 
discriminate the different sounds made by different targets, which require a considerable investment in 
time and resources. 

An automatic classification aid which operates whilst the radar continues to perform its surveillance is 
thus a significant aid in reducing the operators' workload.  The classifier is thus required to operate 'on the 
fly' during the normal surveillance dwell of the radar so the operator does not have to interrupt normal 
surveillance operations to obtain a classification - classifications must be generated automatically for all 
plots and made available on demand.  

For the surveillance application, the classifier has to be sufficiently accurate that after observing a target 
for a few scans the operator can be reasonably confident of its class.  It is important to realise that this 
application does not need the same level of reliability as some other non-cooperative target classification 
applications (see, for example, reference 2), since the operator can make use of other information, such as 
target speed and, if desired, the audio mode, to supplement the information provided by the automatic 
classifier. It should be emphasised again that the purpose of the automatic classifier is to relieve the 
operators of the workload required to listen to the Doppler signals of each target one at a time.  In an 
environment with few targets, the operators still generally prefer the confidence they obtain by listening to 
the Doppler from a target, but when there are many targets present, that is not always possible and then the 
automatic classifier can be used as an aid to help to decide which targets should be examined individually. 

2.0 CLASSIFICATION DURING THE SCAN 

Since the radar must classify the target as it scans past during its normal surveillance operations, the 
sample of the Doppler which it can use is limited in length.  The dwell during which the classification 
must be performed is typically less than 100ms.  This time is much shorter than that used for audio 
classification, where the operator can in principle listen to the Doppler for as long as he likes and will 
typically listen for several seconds.  This difference between the 'audio' case and the 'scanning'  case 
means that the techniques which are appropriate for audio recognition are not necessarily appropriate for 
the automatic classifier.  Indeed, the fact that audio-based classification is possible does not in itself prove 
that classification with a scanning radar is possible.   

Jahangir et al. [3] describe a Doppler classifier which uses speech-recognition principles, but they 
concentrate more on longer audio samples and show that the performance degrades with shorter samples.   
They point out that a classifier, such as ours, which treats the spectrum as stationary and performs a single 
transform over all of the data is likely to be sub-optimal for longer data sets, where the spectrum generally 
changes with time.  In our case, however, the shortness of the samples means that the spectrum can 
reasonably be considered to be stationary.  To continue the analogy with speech: conventional speech 
recognition looks at the chain of successive phonemes, whereas this 'scanning mode' classifier is trying to 
perform a task which is closer to trying to recognize a single phoneme. 
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3.0 CLASSIFIER ARCHITECTURE 

For the MSTAR MLI, the set of possible target classes between which discrimination was required was: 

•  Personnel 

•  Wheeled Vehicle 

•  Tracked Vehicle 

Internally the classifier also generated the classes of  

• Unknown 

• Reject. 

The later versions also includes the classes of  

• Helicopter 

• Small ship 

• Large ship 

The original MSTAR MLI variant, which distinguished between  Personnel, Wheeled Vehicles and 
Tracked Vehicles, used a linear discriminant[4] for the classification, with separate templates for each of a 
number of velocity bands, and used principal component analysis[5] to simplify the training process.  This 
was preceded by pre-processing to organize the data into a form which was suitable for the linear 
discrimination process. The set of velocity bands ensured that the class of 'Personnel' could not be returned 
from a target which was moving faster than a running man. 

3.1 Rejected and Unknown 
It is important to be able to recognize the cases where the classification breaks down. A class of 
'Unknown' is returned if the Doppler sideband information is likely to have been corrupted by noise 
sidebands returned from a much larger clutter return in the same range/azimuth cell. This process is also 
refined to allow the target itself to be rejected if it may be purely a detection of the transmitter noise 
sidebands.  The stability of the radar is such that this almost never happens, but it is a theoretical 
possibility in the presence of extremely large clutter returns at relatively short range, and is an easy 
condition for which to check within the classifier, since all of the preliminary work the has already been 
done in order to check the validity of the Doppler sideband information.  

3.2 Helicopters 
As shown in figure 12 of reference 6, the signature of the helicopter blade 'flash' is very distinctive.  The 
approach which has been taken is to look for significant energy in the part of the spectrum which is 
moving in the opposite sense from the body of the object.  Since the blade flash is a fleeting phenomenon, 
it is not appropriate to process it using the relatively long sampling windows used by the linear 
discriminant system.  The actual detection process is therefore performed in the time domain, where the 
energy from the blade flash is concentrated, rather than in the frequency domain, where it is diffuse, so the 
detection process can then be more efficient.  The ability to detect the blades, together with the basic 
radar's ability to detect a crawling man, i.e. a target which is moving extremely slowly, means that the 
radar now has an effective capability to detect as well as recognise hovering helicopters.  

The process of detecting the blade-flashes was found to be significantly more reliable than attempting to 
use the rotor hub motion as a classification 'feature' in a linear discriminant system. 
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3.3 Ships 
Ships are in effect defined as targets which are not helicopters but which are over the sea.  Preliminary 
studies were made to look at the effectiveness of a Doppler-based classifier for ships.  Although under 
some circumstances the audio obtained from the Doppler from ships can be quite distinctive, it was found 
to be difficult reliably to incorporate ships into the scheme of the linear discriminant, because of the 
variability of their signatures. 

It may be possible in some cases to determine whether the clutter background is land or sea from its 
statistical variations and Doppler spectrum, but it was reckoned that, again, it would be very difficult to do 
this reliably, particularly with a radar like MSTAR which was designed to reject the clutter, so in the end 
this decision was made using maps and this determines whether a target is assumed to be a land target or a 
ship.  The details of this process are discussed in section 8. 

3.4 Architecture 
When the classifier was extended to include the additional classes, the decision was taken to move away 
from the almost pure 'linear discriminant-based' approach originally used.  The positive reason for doing 
this was to take account of additional information, such as radar cross section, which although not a 
reliable discriminant in itself, does contain useful information.  The negative reason was to avoid the 
possibility of the classification being degraded as more classes are added.  For example, if there are N 
classes then N-1 binary comparisons might be made to determine the target class.  If each classification 
has a probability of p of being correct, then the overall probability of correct classification is only  

p0 = pN-1  

For example, if p = 90% and N =3, typical of the original classifier, then p0 = 81%.  Extending the number 
of classes to 5 would therefore be expected to reduce the probability of correct classification to only about 
66%. 

Another desire is to be able, where the resultant update rate is acceptable to the user, to correlate the 
classification obtained on the same object on different scans, again to improve the performance. 

The overall algorithm of the classifier is thus: 

 if target is below the clutter sidebands then Class :=  'Reject' 
  else  if Doppler sidebands are masked by clutter sidebands then Class :=  'Unknown' 
   else  if target is small and slow-moving then Class :=  'Personnel' 
    else  if  'blade flash' detected then Class :=  'Helicopter' 

    else  perform linear discrimination to distinguish between  
'Wheeled,' 'Tracked' and 'Personnel'; 

 if  the target is over the sea  and  Class in ['Personnel,' 'Wheeled,' 'Tracked']  then 
  if radar cross section > threshold then Class := 'Small Ship' 
  else  Class := 'Large Ship'; 
 compare class with other classifications of the same object; 
 if there is a clear winner then  return weighted majority class 
 else return 'Unknown.' 
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4.0 PRE-PROCESSING THE SIGNAL SPECTRA  

The sequence of samples obtained during the radar's dwell is first Fourier transformed to form a spectrum, 
representing the Doppler shifts of the body of the target and of any parts of the target which are moving 
independently of the main body at that moment.  Figs. 2 to 4 show typical spectra of a wheeled vehicle, a 
tracked vehicle and a man walking.  The clean spectrum of the wheeled vehicle can be contrasted with the 
much more complex, but asymmetrical, spectrum of the tracked vehicle, and this can again be 
distinguished from the more symmetrical spectrum of the walking man.  

This spectrum is also used to assess whether the target should be 'Rejected' or classified as 'Unknown' on 
account of the level of clutter present.  

4.1. Pre-Processing for the Linear Discriminant Algorithm 
Before the spectrum is presented to the linear discriminant classifier it is edited in the frequency domain to 
remove Doppler cells which it is calculated can only contain noise.  Typically 100 Doppler bins are kept to 
ensure that all significant features of the signal are retained.  The spectrum is also regularized by moving 
its peak, which is assumed to represent the Doppler shift of the bulk of the target, to the centre of the 
spectrum.   

To avoid too great a degree of reliance on the normalization of the spectra with respect to different target 
velocities, six separate classifiers are used, covering differing velocity bands. The body velocity is 
estimated from the peak of the spectrum and the signal is presented to the appropriate classifier.  

The spectrum is also normalized in amplitude.  This normalization presents some theoretical problems 
which can be solved only by experimentation to provide an acceptable ad-hoc solution:  if the spectrum is 
not normalized then changes in signal level can affect the signature, confusing the classification process.  
If it is normalized, however, potentially useful information about signal levels is lost.  Normalization also 
assumes implicitly that the amplitudes of all the Doppler components change together, but this has in 
practice been found to be the more successful approach.  

The normalized spectrum is then treated as a vector of features which is passed to the classifier. 

5.0 ROBUSTNESS TO SIGNAL TO NOISE RATIO 

The Doppler-based classification approach is relatively robust to the signal to noise ratio of the targets.  
Provided that the signal to noise ratio is sufficiently high for the Doppler sidebands to be distinguished 
from the noise, the classification performance is substantially independent of that ratio.   

Although the power level in any one Doppler sideband is relatively low compared with the body return, 
the total power in all the sidebands is quite high.  The 'classic' radar range equation also means that 
reduction in classification range compared with the detection range is proportional only to the fourth root 
of the ratio of 'body' to 'sideband' power, so good classification performance is maintained over most of 
the radar's detection range against a given target.  

The detection process, and likewise the classification process, of the AMSTAR radar is substantially 
immune to the effects of clutter because: 

•  low power radars such as this have relatively low dynamic ranges, making good clutter 
suppression easier, 

•  the all-solid state design makes the radar very stable 
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•  the fine Doppler resolution makes it easy to distinguish even slow-moving targets (and their 
Doppler sidebands) from the Doppler sidebands of the nominally-stationary clutter. 

6.0 CLASSIFICATION APPROACH 

Since the radar must have low power consumption any algorithms used in the real-time classification 
process must be simple, although complex, time-consuming processes can be used, if required, for off line, 
training.  

6.1. Fisher Linear Discriminant 
A statistical classification technique, Fisher's Linear Discriminant Analysis (LDA), was chosen [4].  This 
provides an optimum discrimination solution for a linearly separable problem.  A possible alternative 
approach would be to use a neural network [6], of which a multi-layer perceptron, trained by back-
propagation would perhaps have been the most appropriate form.  The principal theoretical advantage of 
the neural network is that it can cope with problems in which the two classes are not linearly separable.  
The potential difficulties of training the network mean, however, that it is generally best to try a linear 
technique first and stick to that if it can give adequate results.   

It is sometimes very hard to understand the inner workings of a neural network, although the behaviour of 
the LDA can also sometimes be hard to understand in a multi-dimensional problem.  Understanding how 
the algorithm is working is of considerable practical benefit when it is to be used in a radar system.  It can 
help to show whether the performance which has been achieved is as good as it should be, whether the 
pre-processing and the choice of classification parameters have been appropriate and, on a more mundane 
level, even whether the algorithm has been coded properly. 

 6.1.1. Choice of Decision Point 

As mentioned above, the basic LDA treats the normalized Doppler spectrum as a feature vector, treating 
each frequency bin as a separate dimension.  As is well-known, the algorithm determines the hyperplane 
which best separates the points in one class from another.  

The position of this hyperplane is determined from the statistical distributions of the positions of the 
returns from the two classes.  One 'tunable' parameter is the criterion for the position of this line.  
Alternative definitions allow it to be, for example, at the point where the probability distributions overlap, 
so that the most probable answer is given for any particular point in the hyperspace.  If the distributions 
have different covariances, however, this is not necessarily the same as the position which gives equal 
probabilities of error for the two classes.    This point is illustrated in Fig. 5.  In practice, a hybrid approach 
was used in the AMSTAR classifier, which was chosen to give the best balance of performance overall. 

6.1.2. Run-Time Complexity 

The actual output of the training stage is the vector representing a normal to the discriminant line, or, more 
generally, a normal to the discriminant hyperplane.  The test of a particular spectrum is performed by 
calculating the scalar product of the feature vector and this reference normal, which projects the point in 
the hyperspace onto that normal.  The choice of class is made by determining to which side of the 
discrimination hyperplane the point falls.  The run-time complexity is thus one multiplication and one 
addition per element of the spectrum plus one comparison, which is all very simple compared, for 
example, with the Fourier transformation required to generate the spectrum in the first place.  
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6.2 Principal Component Analysis 
The amount of training data required increases with the number of elements in the vector.  As mentioned 
above, typically 100 elements are used in the vector, but it is clear that the number of independent 
'features' in the data is far fewer than that.  If the dimensionality of the test vector can be reduced to reflect 
the number of degrees of freedom in the underlying data then the amount of training data can be reduced.  
A well-known way of doing this is to use the Principal Components Analysis (PCA) technique [5], also 
known as the Karhunen-Loeve transform..   

As is well known, the principal directions found by the PCA are the eigenvectors of the autocorrelation 
matrix of the data, and the significance of each dimension is indicated by the relative value of the 
associated eigenvalue, so the simplification of the problem is achieved by retaining only a relatively small 
number of the most significant components.  

In general the PCA complements rather than replaces the LDA, because the PCA is not looking for 
directions which optimize the between-class discrimination, but rather for directions which explain as 
much as possible of the variance within the union of both classes.    

It is not commonly recognized that it is theoretically possible that the most significant directions chosen 
by the PCA could only explain components of the covariance which are common to both classes, in which 
case if the other 'less significant' dimensions are discarded, it would no longer be possible to discriminate 
between the classes. Figure 8 illustrates how this can occur by taking a hypothetical example where the 
data contains two dimensions.  The ellipses represent the distributions of the two classes in these 
dimensions.  It can be seen that most of the variance in this case is in dimension 1, whereas all the 
discrimination information is in dimension 2.  A 'degenerate' PCA which, took only the first principal 
component, would therefore in this case discard all the discrimination information.  Although this is 
clearly an extreme, simplified, case it will be appreciated that similar effects can in theory happen in more 
complex, practical, cases.    

In practice, however the principal dimensions do usually contain most of the classification information.  
This has been specifically checked for this classifier by showing that if the principal components are 
excluded from the classification vector, very poor discrimination is achieved between the classes. 

Removal of only a few dimensions, with the lowest eigenvalues, on the other hand, can sometimes 
significantly help the discrimination process by eliminating dimensions which explain virtually none of 
the variance, but which serve only to compromise the stability of the algorithm.   It is sometimes difficult 
to relate some of these phenomena directly back to the original data set, but dimensions which explain 
nothing of the variance are probably due to artefacts in the pre-processing. 

Although the directions chosen by the PCA contain most of the discrimination information, the principal 
direction is in general not aligned exactly with the normal to the original discrimination plane. In order to 
obtain good discrimination the PCA is thus followed by an LDA process as described previously.  The 
PCA is thus used during the training process as a 'pre-processor', to reduce the dimensionality of the 
problem. About ten principal components are typically retained, leading to a ten-fold reduction in the 
amount of training which must be obtained.  

It is important to emphasize that the PCA does not affect the complexity of the real-time classification, 
since the dimensionality of the reference vector can be increased again after training to match the size of 
the data vector, so that no additional real-time processing of the data is required.  
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7.0 TESTING AND PERFORMANCE 

7.1 Tests during Development 
During the training phase, 10% of the available data, chosen at random, was set aside for testing, i.e. 90% 
was used to train the discriminator but the other 10% was only used to test it.  The individual types of the 
vehicles used to gather the training data, their registration numbers and the identities of the personnel who 
acted as the 'targets' were all recorded to allow checks to be made that the classifier was not accidentally 
discriminating between the identities of individual targets when it should generalize for broad classes. 

Tests were made of the correlation of false alarms between adjacent data samples to assess what time 
delay was needed before samples of training data could be considered to be independent.  It was 
concluded that, very approximately, samples of personnel which were separated by 50ms could be 
considered independent whereas the delay had to be 100ms for wheeled vehicles and 150ms for tracked.  
Since each sample was about 50ms along, all the 'personnel' data could be used to provide independent 
training samples, but only alternate samples of the wheeled vehicle data and one in every three of the 
tracked vehicle data.  This 'thinning out' of the data meant that we avoided the possibility that some of the 
'test' data could have been highly correlated with particular adjacent examples of the training data. 

During the training phase, tests were carried out to assess the sensitivity of the classifier to the aspect of 
the targets, by training a discriminator using only data gathered at one nominal aspect angle and testing it 
with data gathered at another. As expected, it was found that the Doppler signature is relatively insensitive 
to changes in aspect angle.  The signatures remained correlated over about 30 degrees, although large 
changes in aspect can causes significant changes in the signatures, probably due to obscuration of parts of 
targets.  

The sensitivity to variations in range was tested by adding noise to the test data to simulate a reduction in 
the signal to noise ratio.  The sensitivity to changes in velocity was tested by varying the number of 
velocity bands and checking that this did not significantly change the performance.  

7.2. Acceptance Tests 
Proposing a test plan for the classifier can present a significant theoretical problem if one does do not 
know a priori what factors, such as target range or speed or direction, might affect its performance. In that 
case field tests would have to cover all possible target conditions and would be prohibitively expensive.  
The problem of testing the classifier can, however, be made manageable by making use of the tests which 
have been performed during the development to assess the sensitivity to aspect angle, range, velocity etc.   
This allows a suitable range of tests to be devised, but there may still be a relatively large number of 
combinations to be tested.   

For AMSTAR most of the testing was performed using the 'test set' extracted from the training data, as 
described above, which had been used for the tests performed during the training.  This contained enough 
data to obtain statistically significant results in different scenarios to ensure that the classifier's 
performance was satisfactory in all combinations of scenarios.  Since the whole training and testing 
system operated in software, the process of obtaining the results in these laboratory based tests was also 
many times faster than reading each result individually from the radar display and recording it by hand.   
Although this procedure is efficient, it suffers from the fact that it is still dependent on the correctness of 
the sensitivity analysis carried out during the training phase and can only test the classifier against data 
gathered in the same scenarios as the training data.  A relatively small number of completely independent 
'field' tests were therefore performed to give confidence that the results of the 'laboratory' testing were 
reliable.  Whilst these could confirm that the classifier worked in the scenarios tested, it could not give 
statistically significant information on a large number of the scenarios individually.  
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The overall classification performance obtained for the three-class case used in the MLI variant has 
already been reported before [8].  The comparable results with four classes plus 'Unknown' are: 

Table 1: Overall Classification Accuracy for the AMSTAR Classifier 

True Class   Reported As 
 Personnel Wheeled Tracked Helicopter Unknown 

Personnel 83%  14%  3%  1%  0% 
Wheeled 0%  82%  10%  5%  4% 
Tracked 0%  15%  77%  8%  0% 
Helicopter 3%  6%  4%  82%  6% 
 

The totals are not exactly 100% due to rounding errors.  It will be appreciated that these results are for a 
single observation of the target and the results seen by the operator will be better, once successive looks 
have been compared as discussed below. 

It will be noted that, compared with the three-class case, the performance on tracked vehicles has dropped 
slightly below 80% for this 'single look' case reported above, although the change in the numbers is 
probably not significant. It is noteworthy that these results are still generally better than those reported in 
[3] for short dwells, although better results were obtained with the hidden Markov models when longer 
dwells were available.   

The corresponding field trials of this 'four class' classifier showed correct classifications of between 73% 
and 80% on a single 'look', which, is in equivalent to a value of the order of 90% after the scan-to-scan 
comparisons, and is thus comparable with the results reported in reference 8.  The field trials also showed 
that, as predicted, correct classification was achieved at ranges of the same order as the detection range. 

8.0 POST PROCESSING 

8.1. Scan to Scan Processing 
The classifier follows the radar's plot extractor. The output of the classifier is used to tag the plot when it 
is sent to the radar's Control and Display Assembly.   The operator accesses the classification by putting 
the cursor near the plot.  This placement does not have to be as precise as is needed for audio 
classification.  If the nominated plot is part of a trail, the display processing can be arranged to look at the 
classification of adjacent plots to reject occasional false classifications or to report 'unknown' if the 
classifications are inconsistent.  This process ensures that the accuracy after a few scans is at least as 80% 
for any combination of target type and velocity band, i.e. it gives good results not only in 'average' 
scenarios but in the worst case.  In other variants, an automatic tracker can be used to associate the plots 
together, and the individual classifications within the track can be compared to eliminate the occasional 
erroneous classifications. 

If the classification is inconsistent, this is used in some variants as an additional 'trap' which also allows 
the class to be reported as 'Unknown.'  User feedback suggests that operators are much happier with a 
relatively high proportion of returns being classed as 'Unknown' than they are with firm classifications 
which are in fact erroneous.  

8.2. Sea Target Classifications 
It is also at this stage that the classification of sea targets is incorporated.  The map in the MMI is used to 
ascertain whether the target is on the land or on the sea.  If it on the sea and not a helicopter or an 
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'unknown,' it is classified as a ship.  Ships are distinguished between 'large' and 'small' on the basis of their 
radar cross sections.  The ratio of radar cross section between 'small' and 'large' targets is 50:1 (17dB) and 
by placing the threshold 5dB above the limit for a 'small' target there is a 94% chance that a target with a 
Swerling 2 fluctuation and an RCS at the limit of the values to be classified will be classified correctly.   

9.0 CONCLUSION 

An automatic classifier has been successfully incorporated into the AMSTAR Battlefield Surveillance 
Radar.  It uses Linear Discriminant Analysis to exploit the Doppler signatures of the targets to provide 
classification between the classes of Personnel, Wheeled vehicle and Tracked vehicle on land, Small and 
Large Ships on the sea and Helicopters in both domains.  This provides classification aids which can 
significantly reduce the operator's workload without compromising the radar's surveillance mode 
performance.  A performance equivalent to better than 90% average and better than 80% worst-case after 
scan-to-scan comparisons, equal to that reported in reference 8 for the three-class case has now been 
achieved for the four-class case.  The technique of Principal Components Analysis has also been used to 
minimize the amount of training data required. 
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Figure 1: The AMSTAR Radar  

 

    

Figure 2: Spectrum of a Tracked Vehicle                        Figure 3: Spectrum of a Wheeled Vehicle 
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Figure 4: Spectrum of a Walking Man 

 

    

Figure 5: Different Discrimination Choices  Figure 6: Hypothetical a Case when PCA            
for the Linear Discriminant Classifier                          would not work with LDA 


